PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion.
نویسندگان
چکیده
Molecular therapies are hallmarks of "personalized" medicine, but how tumors adapt to these agents is not well-understood. Here we show that small-molecule inhibitors of phosphatidylinositol 3-kinase (PI3K) currently in the clinic induce global transcriptional reprogramming in tumors, with activation of growth factor receptors, (re)phosphorylation of Akt and mammalian target of rapamycin (mTOR), and increased tumor cell motility and invasion. This response involves redistribution of energetically active mitochondria to the cortical cytoskeleton, where they support membrane dynamics, turnover of focal adhesion complexes, and random cell motility. Blocking oxidative phosphorylation prevents adaptive mitochondrial trafficking, impairs membrane dynamics, and suppresses tumor cell invasion. Therefore, "spatiotemporal" mitochondrial respiration adaptively induced by PI3K therapy fuels tumor cell invasion, and may provide an important antimetastatic target.
منابع مشابه
Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملMolecular Pathways: Mitochondrial Reprogramming in Tumor Progression and Therapy.
Small-molecule inhibitors of the phosphoinositide 3-kinase (PI3K), Akt, and mTOR pathway currently in the clinic produce a paradoxical reactivation of the pathway they are intended to suppress. Furthermore, fresh experimental evidence with PI3K antagonists in melanoma, glioblastoma, and prostate cancer shows that mitochondrial metabolism drives an elaborate process of tumor adaptation culminati...
متن کاملHGF-induced invasion by prostate tumor cells requires anterograde lysosome trafficking and activity of Na+-H+ exchangers.
Hepatocyte growth factor (HGF) is found in tumor microenvironments, and interaction with its tyrosine kinase receptor Met triggers cell invasion and metastasis. It was previously shown that acidic extracellular pH stimulated peripheral lysosome trafficking, resulting in increased cathepsin B secretion and tumor cell invasion, which was dependent upon sodium-proton exchanger (NHE) activity. We n...
متن کاملPI3K and mTOR inhibitor, NVP-BEZ235, is more toxic than X-rays in prostate cancer cells
Background: Radiotherapy and adjuvant androgen deprivation therapy have historically been the first treatment choices for prostate cancer but treatment resistance often limits the capacity to effectively manage the disease. Therefore, alternative therapeutic approaches are needed. Here, the efficacies of radiotherapy and targeting the pro-survival cell signaling components epidermal growth fact...
متن کاملA Novel High Content Imaging-Based Screen Identifies the Anti-Helminthic Niclosamide as an Inhibitor of Lysosome Anterograde Trafficking and Prostate Cancer Cell Invasion
Lysosome trafficking plays a significant role in tumor invasion, a key event for the development of metastasis. Previous studies from our laboratory have demonstrated that the anterograde (outward) movement of lysosomes to the cell surface in response to certain tumor microenvironment stimulus, such as hepatocyte growth factor (HGF) or acidic extracellular pH (pHe), increases cathepsin B secret...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 28 شماره
صفحات -
تاریخ انتشار 2015